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CHAPTER VII-TN 35: STATISTICAL CONSIDERATIONS USING GRAVITY TYPE
MODELS TO EXPLAIN VISITOR FLOWS
By M.F. Goodchild
ABSTRACT

This paper reports on an inquiry into the problems of fitting aggregate spatial interaction
models to empirical data. The concern is with flows of visitors to recreation sites from a variety
of origins, and with the class of models for those flows, normally referred to as gravity models.
The paper reviews the conventional approach to spatial interaction analysis, using standard
measures of success. Then four basic problems are discussed in the context of a small data set.
These relate to: non-linearity of models; integral values of visitor flows; volume of flow
observed and goodness of fit; and the weak theoretical basis for the models used. Finally, the
paper examines other problems which arise in more complex situations/ and makes general
recommendations.

The early sections on problems are statistical and will be of more interest to technical
readers; later sections are more general, and the statistical results are restated non-technically in
the conclusions.
INTRODUCTION

This paper reports on an inquiry into the problems of fitting aggregate spatial interaction
models to empirical data. More specifically, it is concerned with flows of visitors to recreation
sites from a variety of origins, and with the class of models for those flows, normally referred to
as gravity models from a rather tenuous analogy to the Newtonian inverse square law of
gravitational attraction.

The most general form of the gravity model is as follows:
I( i,j ) = f1()Pif2()Ajf3()Di,j

Ii,j is the flow from origin i to destination j,
Pi is a measure of the potential supply of visitors from origin 1,
Aj is a measure of the attractiveness of place j,
Di,j is a measure of the trip from i to j, and
f1(), f2(), and f3() are functions calibrated for a given activity and set of origins and
destinations.

Since the early sections of the paper consider the problems of fitting models to a single
destination, f2 can be ignored. Assume that Pi is the population of the ith origin, that fl is linear
and that f3 takes one of the following forms: ebD

i,j or Db
i,j. Then there are two possible

expressions of the general form presented above:
( 1) Ii,j= PiebD

i,j

(2) Ii,j= Pi AjDb
i,j

While Equation 2 is, the historic gravity model, recent studies have shown increasing
interest in Equation B, both on empirical and a priori theoretical grounds (Cesario 1974, “More
…”; Wilson 1970). Furthermore, the algebraic difference gives rise to rather different
methodological problems in each case.

There are several such problems. First, the non-linear form of both models means that if
standard linear regression techniques are to be used in calibration, there must be a transformation
of the variables, so that the results of the analysis appear in units which are often misleading, and
which make comparison with the original data difficult. Second, visitor flows are composed of
integral numbers of people. If flows are sampled over some limited time period and used as
estimates of long-term interaction, then the sampling process will be quite different to that
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normally assumed in regression analysis. Third, the success of the analysis, or the degree to
which the model fits the data, will depend on the length of the sampled period, so that the greater
the total visitor flow sampled, the better the fit. Finally, gravity models have a rather weak
theoretical basis. Such explanations as do exist (McConnell & Duff 1976; Schneider 1959;
Wilson 1970) contain strong assumptions which are easily broken in the real world, so that the
model may suffer from structural inadequacies in specific situations.

The early sections on basic problems are statistical and will be of more interest to
technical readers; later sections are more general, and the statistical results are restated non-
technically in the conclusions.
THE CONVENTIONAL APPROACH
The data set used for illustration and simulation in this study is the one discussed by Beaman,
Knetsch and Cheung (see TN 19). It gives the visitor flows to Rowan's Ravine Provincial Park in
Saskatchewan, from seventeen origin areas (see TN 1). In the sampled period, the year 1969,
there were 9,828 visitor vehicles, including 5,862 from the observation unit containing the city of
Regina, and none from four of the areas. Following the earlier work, each observed flow has
been arbitrarily increased by 1. In calibrating logarithmic models one is added to avoid there
being an attempt to take the logarithm of zero.

TABLE 1 ANALYSIS OF EQUATION 1
***** a b R2 PE*** RMS****

OLS -.488 -.0547 .755(.685)* 138.4 217.3
NLLS -.812 -.0381 .755 75.0 108.7

WNLLS -.365 -.0585 .296 191.8 337.7(104.1)**
MIN PE -.380 -.0449 .898 66.6 84.7

MIN RMS .368 -.0495 .486 67.8 71.9
*R2 given first for ln(Ii,j/Pi) , in parentheses for Ii,j
*Figure in parentheses computed using weighted observations.

*** Mean absolute % error in flow.
**** Root mean square error in flow. (
*****OLS=Ordinary Least Squares; NLLS=Non-Linear Least Squares; WNLLS=Weighted Non-Linear Least

Squares; MIN PE=Minimum Mean Absolute Percent Error; MIN RMS=Minimum Root Mean Square Error.
The conventional approach to calibration is to transform the equations to linearity by

taking logarithms. Equation 1 can be transformed as follows:
ln(Ii,j/Pi)= a + bDi,j
and Equation 2:
ln(Ii,j/Pi)=ln(a)+b ln(Di,j)

Both equations are of the form y = c + dx, and involve two constants to be determined by
fitting to data. In the first, the negative exponential case, ln(Ii,j/Pi) is regressed against Di,j to
estimate values for a and b, while in the second ln(Ii,j/Pi) is regressed against ln(Di,j) to estimate
ln(a) and b.

The results of these OLS, Ordinary Least Squares, regressions for the Saskatchewan data
can be found in Figures 1 and 2. The R2 values, describing the degree to which ln(Ii,j/Pi) can be
predicted from Di,j and ln Di,j, were .755 and .767 respectively, and the respective equation
coefficients a and b can be found in Tables 1 and 2. Statistically, both analyses were highly
significant and led to rejection with 99.9% level of certainty that of the null hypothesis could be
rejected. Still, virtually the same R2 values were obtained so R2 is not showing that one or
another model is better.
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TABLE 2: ANALYSIS OF EQUATION 2
a b R2 PE RMS

OLS 10965 -3.40 .767 (.344)* 111.7 141.5
NLLS 163 -2.01 .903 70.8 75.9
WNLLS 8770 -3.50 -.023 236.3 308.6 (93.0)**
MIN PE/MIN RMS 30000 -3.42 -.020 46.7 59.4
* See footnotes to TABLE 1.

THE TRANSFORMATION PROBLEM
The largest residual observed in the negative exponential regression (Equation B) was

3.477; in the power law regression (Equation 2) -3.670. In terms of the ordinate, ln(Ii,j/Pi), which
ranged from -12 to 0, these residuals were not large and were visually acceptable (see Figures 1
and 2). But in terms of Ii,j/P i, in which the range is from .00001 to 1, the residuals represented an
overprediction by a factor of roughly 40. Specifically, the observed flow Ii,j for the point with the
largest residual was l; the first OLS model predicted a flow of 32.3, the second 39.3. Residuals
were then recalculated by taking the difference between the observed flow, and the flow
predicted values of ln(Ii,j/Pi). Unlike the earlier values, these residuals will not sum to zero for
either model. Equivalents to the earlier R2 were calculated from the ratio of the sum of squared
residuals to the visitor flow sum of squares for each model, to give .685 for the negative
exponential and .344 for the power law. Clearly these models are much less successful if
measured in terms of their ability to predict Ii,j rather than ln(Ii,j/Pi).

Computing the difference between observed and predicted flows inevitably gives most
weight to origins which contribute a high flow, and very little to smaller, more distant origins.
Yet the planner who is interested in the proportionate difference between the observed and the
predicted would give as much weight to a 10 percent error in a flow of 50, as to the same
percentage error in a flow of 5000. Various authors have suggested that a percentage error in
observed flows is a more useful measurement of residual variation in the recreation context
(Elsner 1971; Ellis & VanDoren 1966) and have computed the root mean square percentage error
(RMS) as a substitute for the conventional R2 (see TN 19). The respective values of RMS error
for the two models were 217.3 and 141.5, and the means of the absolute percentage error (PE)
138.4 and 111.7. Despite the high R2 values, the predicted power of the models is rather weak
when expressed in these terms.

A more direct approach to the fitting of the general model would be to avoid the
logarithmic transformations altogether, and fit Equation 1 and 2 by a least squares procedure,
directly minimizing the sum of squared differences between observed and predicted flows. This
was done using a combination of Gaussian and Steepest Descent methods to minimize the
objective and the relevant statistics are shown in Tables 1 and 2 for comparison with OLS. This
procedure will be referred to as NLLS, for Non-Linear Least Squares. Cesario (1974, “more on
…”) has discussed a similar approach.

There is a marked reduction shown in both RMS and mean absolute error (PE) and
although the R2 values should not be compared to those derived from the OLS models, they can
reasonably be compared to the recomputed values based on flows which are shown in
parentheses. It is clear that the use of logarithmic transformations can seriously reduce the
validity of gravity-type models, when validity is defined by RMS or PE error measures.
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If it is argued that the RMS or PE measures are the most effective in the planning context,
then ultimately the most satisfactory way of fitting or calibrating a flow model must be by direct
minimization of these criteria, rather than the conventional sum of squared residuals. In fact for
this particular data set the degree of improvement is not great. The minimum mean absolute
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percentage error resulted when predictions were made using the equations: Ii,j=Pie-0.380-0.0449 D
i,j

Ii,j=Pi 0.30000 Di,j
-3.42 and while the second equation also minimized the RMS error for the

power law, the negative exponential was calibrated with a=0.368 and b=-0.0495 on this criterion.
The accompanying statistics are shown in Tables 1 and 2 as the MIN PE and MIN RMS
procedures. The approach used was an interactive procedure in which the user watched the
performance of a general objective function as each constant was incremented over ranges
prescribed by the user. The routine was written by the author.

For comparison, the above equations are plotted in Figures 1 and 2 with the results of the
earlier procedures. They do not have the same visual impact as the OLS equations, which pass
neatly through the points, since their objective functions and residuals are based on Ii,j and thus
only indirectly related to the ordinate ln(Ii,j/P i).
THE HETEROSCEDASTICITY PROBLEM

In using the OLS linear regression model, one makes the assumption that residuals are
independently distributed with a constant variance (homoscedasticity assumption). In terms of
the interaction model transformed by taking the logarithm of Ii,j/Pi, each observation is assumed
to be subject to the same residual error distribution, or in terms of Ii,j/Pi to the same
proportionate error. If ln(Ii,j/Pi) is assumed to have normally distributed errors with standard
deviations of σ, so that errors in Ii,j/Pi will be lognormal, or normal when expressed as
proportions one has a model for usual (OLS) linear regression.

In reality, this model is quite inappropriate to the expected distribution of Ii,j. If the
observed visitor flow is the result of a very large number of samplings of the origin population
under a very small probability, then Ii,j can be expected to follow a Poisson distribution (see TN
19). In other words, its distribution is discrete and non-normal, with a variance which is equal to
its expected value, and thus varies from observation to observation. The variance in ln(Ii,j/Pi) is
compounded by the distribution of Pi, and clearly violates the homoscedasticity assumption of
OLS.

Beaman et al. (see TN 19) have calculated the variance in ln(Ii,j/Pi) as approximately
proportional to l/Ii,j by expanding the logarithm function in a Taylor series. (The error variance of
ln(Ii,j/Pi) clearly depends on the value of Pi. Beaman et al. made the implicit assumption that Pi is
constant in their Equation 9.) Thus the high-flow observations are subject to a much smaller error
variance and merit much greater weight in the regression. To fit the logarithmic transformation
of Equation B, Beaman et al. used a generalized least squares procedure (GLS) with flows
weighted by the inverse of the dependent variable variance estimates.

A similar approach can be taken in the direct, nonlinear regression. If we assume a
Poisson distribution, the error variance of Ii,j in Equations 1 and 2 can be taken as Ii,j itself. Then
the appropriate weighted least squares criteria are:
MinimizeΣ( I( )-P( ) exp ( a+bD j ) ) )2/Ii,j and
MinimizeΣ( I( i,j )-P( ) aD i,j )**b )2/Ii,j
These criteria give the greatest weight to the smaller flow values, since in terms of Ii,j these are
the most reliable, whereas for the logarithmic regressions it was the high flow values that had the
least error variance and the greatest weight. The criteria are quite similar to those for the direct
minimization of RMS error:
Minimize (1/n Σ((Ii, j-Pi ea+bDi,j)2/ (Pi ea+bDi,j)2))1/2 and
Minimize (1/n Σ((Ii,j-Pia Di,j

b)2/(Pi aDi,j
b)2))1/2

WHERE n is the number of points except that the denominator is formed from the
predicted rather than the observed flow.
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For comparison with the earlier procedures, regression results are shown in Tables 1 and 2
and Figures 1 and 2. Error measures were computed without observation weights. In both cases
there is a considerable deterioration in the degree of fit reflected in the error measures. The
corresponding weighted RMS figures are 104.1 and 93.0 respectively, and give a fairer
representation of the degree of fit. But as would be expected, in neither case do the figures
approach those for a direct minimization of RMS error.

It is intuitively reasonable to weight observations in inverse proportion to their error
variance. Since the error variances are known from theoretical arguments, it is possible to make
corrections for heteroscedasticity by weighting observations. But in reality the observed error
variance is composed both of a Poisson-distributed part and a component due to structural
inadequacies in the model, with an unknown distribution. Further, the data also violates several
other assumptions. Errors are not normally distributed: when expressed as small visitor flows
they are Poisson, with a highly skewed discrete distribution, and when expressed as log Ii,j/P(1)
they are compounded by the distribution of Pi. Further, because the values of the variables
themselves are not sampled from a bivariate normal distribution in any of the models, questions
of statistical inference and parameter estimation are discussed in the next sections. Discussion is
based on the results of Monte Carlo simulations.
SIMULATION TECHNIQUES

The models under examination involve three "sampled" variables, Ii,j, Pi and Di,j. But of
these we may assume that Di,j and P i are known to considerable accuracy, and that all error is
concentrated in Ii,j. Thus error will be of two types: a statistical component due to the use of a
flow value sampled over a limited time period as an estimate of a long-term average flow; and a
systematic component due to the structural insufficiency of the model in explaining visitor flows.

In the next two sections, the results of simulations of the statistical error component in the
Saskatchewan data set are discussed with two objectives. First, it is possible to simulate the
sampling distributions of the important regression parameters and so gain a more quantitative
notion of the relative importance of the statistical and structural components. Second, simulation
can establish the importance of sample size in parameter estimation. Because of the complexity
of the error distribution, the results will be specific to the data set and only qualitative
generalities can be expected.

The distribution of Ii,j is assumed to be Poisson for a given observation. Ii,j is an unbiased,
maximum likelihood estimate of the Poisson density parameter m such that:
P(r) = mre-m/r!

WHERE P(r) is the probability that a Poisson process of density m will generate exactly
r events in a trial.
To simulate the effect of statistical error, the observed visitor flows were used as

estimates of m, and for each simulation run, each flow was independently replaced by a random
Poisson deviate of that density. Thus the range of parameters found for models fitted to this
simulated data will represent the range of uncertainty attributable to statistical error.
Two methods were used to generate the deviates. Descriptions of these is not provide in this
revision of the paper since in 2006 Poission observation generation programs are readily
available.
DISTRIBUTION PROPERTIES

Two types of simulations were made, one using real visitor flows as the basis of simulated
flows, and the other using predicted flows from the OLS negative exponential model as the basis.
The results of the first series of experiments are shown in Table 3. Twenty-four runs were made,
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and analyzed using the three models based on the negative exponential; the Ordinary Least
Squares procedure using ln(Ii,j/Pi) as the dependent variable (OLS ),the direct least squares
calibration of Equation 1 (NLLS), and the latter using weights estimated from the predicted error
variances (WNLLS).

The results show that for this data set, statistical error is very much less important than
structural error. For the OLS case, the standard error of the coefficient in the original calibration
of the model was estimated to be .00803. Yet successive simulations of statistical errors
produced a range of coefficients with a measured standard deviation of only .0005. Similarly, the
variation in R2 as a result of simulation suggests that the major source of unexplained variance is
structural. Again, the regression standard error in the coefficient is .808, compared to a standard
error in simulation runs of .046.

Results are very similar for the non-linear regression. The skewness in the EMS and PE
distributions is largely removed, and the consequent bias in single estimates is reduced. Again,
the estimates of a and R2 are remarkably precise, although there is a slight increase in the
standard error for the b coefficients. This is somewhat offset by a proportionate reduction in the
standard error of a. On the other hand, the weighted regression results revert to the pattern shown
by OLS, giving slightly better estimates of b and biased estimates of RMS.

TABLE 3 FIRST SIMULATION EXPERIMENTS
a b R2 PE RMS

OLS
Actual -.488 -.0547 .755 138.4 217.3
Simulation -.489 -.0547 .754 140.2 227.7
Std Error .046 .0005 .010 5.3 16.6
NLLS
Actual -.812 -.0381 .905 75.0 108.7
Simulation -.814 -.0382 .902 75.1 109.2
Std Error .047 .0011 .010 2.2 3.4
WNLLS .
Actual -.365 -.0585 .296 191.8 337.7
Simulation -.378 -.0585 .289 196.4 347.6
Std Error .054 .0005 .024 15.2 38.6

TABLE 4 SECOND SIMULATION EXPERIMENTS
a b R2 PE RMS

OLS
Actual -.488 -.0547 1.000 0.0 0.0
Simulation -.528 -.0546 .984 20.6 29.3
Std Error .089 .0019 .010 5.2 7.2
NLLS
Actual -.488 -.0547 1.00 0.0 0.0
Simulation -.536 -.0538 .999 20.0 29.1
Std Error .049 .0010 .001 5.5 6.8
WNLLS
Actual -.488 -.0547 1.000 0.0 0.0
Simulation -.505 -.0548 .984 21.1 30.7
Std Error .072 .0015 .015 7.3 9.0
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The second set of simulations show the amount of error introduced into a perfectly
predictable set of data by adding Poisson-distributed errors to visitor flows (Table 4). They show
that the statistical error component has relatively little effect on error statistics by itself so that
the vast majority of the error observed in the original data must be structural.

PE and RMS errors are remarkably independent of the-method of calibration when
structural error is absent, while R2 is more sensitive to the statistical error component in OLS and
weighted non-linear (WNLLS) regressions. Standard errors of the coefficients tend to be rather
higher than they were in the first set of simulations with real data, except in the case of NLLS.

The above simulations, particularly the first sets, provide a rapid method of evaluating the
relative importance of statistical and structural error in the calibration of a spatial interaction
model. Because of the dependence of the result on the specific configuration of the data set,
and the immense difficulties of any analytic approach, it is suggested that such Poisson
simulations be incorporated into any calibration of this type of model, particularly in cases
where samples are small, and statistical error correspondingly high.

AGGREGATION EFFECTS
Sample size will affect the calibration of a spatial interaction model in various ways. The

statistical error component has known properties, if we can continue to assume that its
distribution is Poisson, so that the error variance in observed flows will increase in direct
proportion to the length of time sampled. The standard deviation will he proportional to the
square root of sample size, so that it will decrease in proportion to the observed flow as sample
size increases.

While statistical error may be well understood, there is no similar basis for assumptions
about structural error. In one particular case, structural error might appear as a normally
distributed residuals. Normally distributed residuals can be argued to arise as a result of a variety
of “other” external effects on visitor flows combing to yield what appears to be a normal
variable. In another case, structural error might be the results of a misspecification of the
functional form of the model, perhaps error in specifying the effect of distance. It would seem
reasonable on dimensional grounds to assume that the standard deviation of the structural error
term will be in constant ratio to the observed flow, and thus rise in direct proportion to sample
size. Thus
Ii,j= {I} (i,,j )+c1Ii,j

1/2 +c2Ii,j

WHERE {I}i,j is the expected flow in the sampled interval;
c1→Ii,j

1/2 is the statistical error component;
c2→Ii,j is the structural component.

STRUCTURAL ERROR
The gravity model is a purely inductive device, open to charges of curve-fitting which can

only be countered by relating the excellent degrees of fit invariably obtained. The first part of
this paper has concentrated on two problems encountered in calibrating the model: variations in
performance between different procedures; and effective measurement of the goodness of fit. But
while it is possible to evaluate the relative importance of statistical and structural error, and to
make allowances for the latter, it is clear that the existence of the structural component represents
an important deficiency in the model.

Any approach to the reduction of structural error must begin at the theoretical level with a
discussion of the basis for the model's excellent fit to reality. The literature offers two major
classes of explanation, first through hypotheses made at the aggregate level, and second through
hypotheses about the behaviour of individuals in the system.
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AGGREGATE THEORIES
Wilson (1970) has shown that under certain assumptions, trips made in a completely

random way between origins and destinations will aggregate so that the total interaction between
origin i and destination j is given by Equation 3, which is algebraically similar to Equation 1.
(3) Ii,j = ko kd Oi Dje-bc(i,j)

WHERE Oi is the total flow from
Dj is the total flow to j,
ci,j is the cost of one trip, and
ko, kd and b are constants,

The equation is derived based on an entropy maximizing strategy using an analogy to
Boltzmann's statistical thermodynamics. Suppose the Ii,j are known so that a table can be
constructed to show the flows between each origin and each destination. It is possible to
calculate the number of ways in which specific individuals can be assigned to specific flows,
given the table of totals along each path. For example, if all individuals are in origin 1 and travel
to destination B, then only one arrangement of individuals is possible, while if trips occur
between multiple origins and destinations there are many ways in which the individuals can be
rearranged without changing the totals. Not all patterns of flows are possible. The total flow from
origin i must equal 0i, and arrivals at j must equal Dj. Wilson introduces a further constraint that
the total cost of all trips made in the system be C.

In a purely random world, in which no behavioural rules exist other than the constraints, it
is reasonable to assume that all possible arrangements of trips are equally likely. This means that
it is possible to calculate the probability of each pattern of flows from the numbers of alternative
arrangements of individuals associated with each pattern, and to find the most likely pattern. The
result is Equation 3. Provided the number of individuals in the system is large, this most likely
pattern proves to be so much more likely than any other that it is possible to predict with some
confidence that it will be the one found in reality.

There are three major ways in which structural inadequacies can arise in Wilson's
analysis, and be reflected in structural errors in the model. First, the model invokes what is
sometimes known as the Principle of Insufficient Reason (Harvey 1969) and assumes that all
arrangements of individuals are equally likely. This will be untrue if, for example, certain kinds
of individuals show a preference for certain types of trips, or if a set of individuals is associated
with a particular origin and may only make trips from that origin. Second, the constraint that the
total cost be C may not reflect behavioural reality. It is more likely that total cost fluctuates as
the sum of a number of fluctuating individual expenditures. Third, behavioural traits may take
the form of further constraints which limit the set of possible arrangements, and may lead to
different conclusions.
BEHAVIOURAL THEORIES

In principle, a theoretical base could be established for the gravity model if it could be
shown that a large number of individual actions, each made according to some general rule,
would combine to produce aggregate flows which were in agreement with the model. Ewing
(1974) discusses some of the relevant problems. In essence, in order to aggregate behaviour in
which distance appears as at least a partial criterion, one must assume some kind of geometrical
arrangement of origins and destinations, and so the aggregate flows will be unique to the
geometry. It is possible for behaviour according to a general principle to combine with a specific
geometry to produce a specific aggregate pattern, and it is conceivable that a specific behavioural
principle might combine with a specific geometry to produce a general aggregate pattern, fitting
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the gravity model. But there is a logical impossibility in conceiving of a general behavioural rule
which would give a genera l aggregate pattern independent of the specific geometry. There is no
general principle of human geometry.

Niedercorn and Bechdoldt's analysis (1969) has received a great deal of attention. They
consider a single individual in origin and the set of trips that he or she makes through time to
various destinations j. Each trip will have a certain utility to the individual, which is assumed to
depend on the number of purposes which are satisfied by the trip, which in turn is assumed to
depend on some attribute of the destination, depending on the context. Each trip has an
associated cost, and the individual is assumed to be constrained by a travel budget. Under these
conditions, the pattern of trips that maximizes the total utility to the individual is shown to be of
the form of Equation 2, under specific assumptions about the utility function.

When aggregated, Niedercorn and Bechdoldt's analysis is capable of predicting the
relative magnitudes of flows from a single origin. In a system of many origins and destinations, it
predicts that the flows from a single origin will be proportioned in a way which is compatible
with the gravity model, but the relative magnitudes of flows from different origins will depend
on the geometrical arrangement of destinations around each origin and so can only be in
accordance with the model in specific geometrical situations.
DYNAMIC ATTRACTIVITY

One characteristic of the model which has not so far been treated as important is that the
independent, predictor variables are usually assumed exogenous with constant values determined
from physically measurable parameters. The analysis in the earlier sections was in the framework
of a single destination. The model differentiates multiple destinations both on a geometric basis
through Di,j and through the parameter Aj, the factor which explains differential flows when
distances are constant. To some extent Aj will be exogenous, related in the recreation context to
the physical characteristics of a site and its immediate surroundings. But in most cases Aj will
also be related to the use that site j is actually experiencing, and thus be at least partly
endogenous. A feedback loop will operate to make the site less attractive when the use is heavy,
and perhaps also when it is excessively light.

The existence of dynamic determinants of attractiveness in an interaction system is not
necessarily a source of structural error. Provided Aj is regarded not as an exogenous variable but
as a parameter that can be expected to change whenever the set of Ii,j changes, then no
contribution to structural error will result. But as such, the model will have no predictive power.
Structural errors will occur under sets of hypothetical flows unless the Aj are themselves
modelled in terms of the determining flows and exogenous physical parameters. Cesario (1974,
“more …”) refers to this as Stage II of a spatial interaction analysis.
MINIMIZING STRUCTURAL ERRORS

Both of the above sources of structural error can be minimized by an appropriate
modelling procedure. Suppose that it is possible to assume that any set of individuals, when
presented with a set of parks of given attractiveness at given distances, will proportion
themselves in the same way, regardless of how many other alternative destinations exist. In
effect, this is the Luce choice axiom (1959). Attractiveness may itself be dynamically related to
use, and the actual flows from the origin to any site will depend on the alternatives available: the
hypothesis concerns the relative proportions only.

The hypothesis can be written as follows:
P(→ i|j → ) f(aj,Di,j)
P(→ k|i → )

=
f(ak,Dk,i)
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OR
P(→ j|i →) = f(Aj,Di,j))/(∑f(Ak,Di,k))

WHERE P(→ j|i→) is the probability that an individual, having left origin i, will go to
destination j, and (k indicates the sum over all destinations available from origin i.

In other words, the relative proportions visiting j and k are determined by the relative
values of some function of attractiveness and distance for each destination.

Now the probability that an individual resident at i will make the trip to j is:
P(i→ j) = P(i →) P(→ j|i→)

WHERE P(i→) is the probability of leaving i to go anywhere. Thus
Ii,j= Pi P( i→ j )

= Pi P(i →) f(Aj, Di,j))/ Σf(Ak, Di,k)
Then the flow from the origin to the jth site will be of the form:
Ii,j= Ei f(Aj,Di,j)

WHERE parameter Ei depends on the alternatives available from origin i as well as on pi.
Provided Ei and Aj are regarded as parameters unique to the given flows and systems

geometry, then, and not equated with Pi or with observable properties of the site, neither source
of structural error need exist. If the model remains inadequate, it must be because incorrect
assumptions are made about the function f, or because the Luce choice axiom does not hold.
PERIPHERAL PROBLEMS

The total use of Rowan's Ravine Provincial Park in 1969 amounted to 9,828 vehicles, or
more properly their occupants. None of the modelling procedures recognized this as a constraint.
In linear regression, it is true that the sum of predicted values equals the sum of observed values,
but not in non-linear regression or in cases where a linear model is fitted to transformed data.
Boyet and Tolley (1966) recognized this problem, but it is difficult to deal with in the standard
methodological practice.

In Wilson's analysis (1970) there are constraints both on the total arriving at a destination,
and on the total leaving an origin, since ko and kd are not fitted parameters, but are solved for in
the constraint equations. Iterative methods have been developed for fitting the model so that
predicted and observed flows will obey the same constraints.
SUMMARY

The points raised in the paper can be divided into two groups. First, there are statistical
issues involved in the fitting of models of the form represented by Equations 1 and 2 to spatial
interaction data. The conventional method of least squares on transformed variables does not
give the "best" fit to the model as that term would be understood by a recreation planner; the
method does not minimize discrepancies between flows observed and those predicted by the
model. The conventional measure of success is based on transformed variables, and shows quite
different results when recomputed for the fit between observed and predicted flows.

Second, several points were made about the structural validity of spatial interaction
models, and the generality of model parameters. The paper outlined the conditions under which
the model could be consistent with underlying general principles of human spatial behaviour, and
thus regarded as a general model.


